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In a previous paper we presented a method for evaluating the generalized exponential 
integral function, E,(x), which is valid whenever x>O and v ~-0. Here we extend the 
evaluation of E,(x) to the whole domain (x > 0, v E R). In the case x > 1, we start from an 
initial value in the region of asymptotic calculation and then reach the required E,(x), making 
use of a suitable combination of Taylor expansions and recurrences, whenever v # 0, - 1, 
-2, . . . Otherwise, the evaluation method for E,(x) is mainly based on recursive calculations 
starting from a suitable initial element calculated by means of proper analytical expressions. 
Computational accuracy has been tested and some results of interest for applications are 
given. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

In applied sciences the problem of evaluating the following generalized exponen- 
tial integral function [ 1 ] arises 

E,(x) = jlm epfx’-” dt (x>O, VER) (1) 

which, for positive integer values n of the order v, reduces to the usual exponential 
integral E,(x) (see Ref. [2] for a recent review, Ref. [3] for alternative notation, 
and Ref. [4] for physical accounts). Exponential integrals, (l), for v = --n corres- 
pond to the so-called molecular integrals A,(x) E&,(X) of quantum chemistry 
c51. 

In physical applications, function E,(x) is related to angular asymmetries in 
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transport theory [I 1 ] applied, for instance, to reactor physics and radiative transfers 
and in flow dynamics. Moreover, evaluation of the exponential integral is needed 
for a theoretical estimate of the energy spectra of prompt neutrons emitted in the 
fission reaction [16]; the generalized exponential integral of half-integer order 
appears when a thermal (l/v) energy dependence of the compound-nucleus cross 
section is considered [7] instead of an approximate constant value. 

In addition to Eq. (l), the generalized exponential integral‘ function can be 
defined [ 1 ] in terms of the incomplete gamma function, r(a, x), as 

E,,(x) = xv - ‘r( 1 - v, x). (2) 

For later use, it is advantageous to rewrite the relevant expression in Eq. (2) as 

E,(x)=r(l-v)[x’-1-e?@*(112-v;x)], (3) 

where r(a) is the usual gamma function, and @*(a, b; x) = ~&(a, b; x)/T(b) I 
Tricomi version [8 J of the Kummer function @(a, b; x). 

Equation (3) has been derived from Eq. (2) making use of the fol1owi.n 
PI 

T(a, x) = r(a)[ 1 - xay*(a, x)] (a#& -1, -2, . ..) 

y*(a, x) = eC”@*(l, a + I; x), 

where y*(a, x) z xmay(a, x)/T( ) a , is the modified version of the incomplete ga 
function y(a, x), which is an entire function of both a and x. 

Owing to the numerous applications mentioned above, the development of com- 
putational methods for E,(x) deserves some interest. To this end, in Ref- [93 we 
have presented a numerical method for E,(x), valid for x > 0 and v > 0, which has 
been tested with the algorithm [ 10, 111 for incomplete gamma ftmctions, which 
resulted as the only procedure generally available for calculating generalizes 
exponential integrals. 

In this paper, we extend the above method in order to obtain an algorithm for 
evaluating E,(x), valid whenever x > 0 and v E R. Basic formulation for ~al~u~at~~g 
generalized exponential integrals in the region x B 1 is shown in Section 2, to~etber 
with the relevant computational scheme, while the background of the method for 
the case x < 1 is described in Section 3. The efficiency of the present algorithm is 
confirmed by the accuracy of the results reported in Section 4, where the numerical 
features of the whole procedure are discussed. 

2. OUTLINE OF THE METHOD IN THE REGION x2 1 

In the case x 3 1, the present method for evaluating E,(x) makes use of a suita 
asymptotic formula, Taylor series expansions, and proper recurrences. 
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The relevant asymptotic expansion is that used in Ref. [9] for large positive 
values s of the order v and reads [12] 

E,(x) =$ 

k-l 

IF0 s-‘(l + x/s)-21 h,(x/s) + Rk(x, s) 
I 

, 

where {h,(u)} are polynomials defined recursively by 

h,+,(u)=(l-2Zu)h,(u)+u(l +U)h;(u) (I = 0, 1, 2, . ..) (7) 

with h,(u) = 1, while h;(u) is the usual notation for the first derivative of polynomial 
h,(u). 

In practice, the h,(u) are generated according to the scheme described in Ref. [9] 
(see also Ref. [ 131). Furthermore, the functions, R,(x, s), satisfy suitable conditions 
(see Refs. [IS, 121 for the explicit expressions), ensuring that Eq. (6) is well 
grounded for sufficiently large values of S. 

As regards the Taylor series expansion, the following expression is used 

&(x-~)=k;o$~vvk(x) (x>O, VER) 

which has been obtained from the Taylor series 

E,(x-Y)= c O” (-~4” dk E (x) 
,=,k!dXk y ’ 

taking into account the following differential formula [1] 

-$ E,(X) = (- l)k &-k(X). 

Function Evpk(x) in Eq. (8) can be generated recursively 
relation [ 1 ] 

E,(x) = f Ce+- r-K+ Ib)l, 

whatever the index r E R. 

(8) 

(9) 

(10) 

by means of the 

(11) 

In the present method, recurrence (11) (which, for r = 0, reduces to the known 
expression E,(x)=e-“lx) is also used for evaluation of E,(x) (v =O, - 1, -2, 
- 3, . . . . x > 0) using E,(x) as starting element. 

Furthermore, the proposed algorithm for E,(x) involves the use of the forward 
recursion 

E,+,(X)=: [e-“--xE,(x)] (r # 0). (12) 
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The above expressions are properly inserted into a suitable computation 
procedure in order to evaluate E,(x) in the region (X > 1). More precisely, apar 
from the case E-,(x) (v = 0, 1,2, . ..). considered above, the sought-for eva~~ati~~ of 
E,(x) when x > 1 is performed according to the following procedure. 

First, we are involved in determining a suitable key element, E&x*), which is 
evaluated asymptotically, via Eq. (6) and used as starting point of the procedure to 
find E,(x) (v #O, - 1, -2, . . . . x 3 1). The corresponding order, v*, and arguments 
x*, are positive values related to the required v and x by 

v*=x*=v+k 613) 

where k = 0 or k = [x,] - [V] according as x 2 x, (x, being the lower bound of the 
“asymptotic” region) or otherwise, and V reads 

V=[x]+D+l-N(v)+v-[v]. (14) 

Here [w] denotes the truncated part of w, H(v) is the Heaviside step fnnc~i~~, 
and the constant D = 1 when (1 - H(v) + v - [v]) < (x - [x]), and D = 0 otherwise. 

At this point, if v* # V, i.e., k # 0, we apply p-times (with p = 0, 1, . . . . k - 1) to the 
following procedure (also sketched in Fig. la), in order to obtain E,(G): 

(I) Compute E,,-p--l(v* -p) by a single step of backward recursion, 
Eq. (1 1 ), using E,, -Jv* - p) as the initial value. 

(II) Starting from the previously calculated value of E,r.-p_ r(v* -p), iterate 
(for q = 0, 1, . . . . l- 1) the Taylor series expansion of EVaPP- l(C-j) (wit 
v”=y” -p - qj and j = l/l), until E,*-pP r(v* -p - I) is reached. 

Brace the value of E,-(C) has been obtained, we make use of different com- 
putational steps, depending on whether v > V or v < V. 

In the former case, one proceeds as follows: 

(a) Starting from E,-(V), E,-(x) is evaluated by means of Taylor series of 
E,(V - y) (with y = V - x). 

(b) Calculate E,(x) by forward recursion for v > V, using E,(x) as initial 
value. 

otherwise, i.e., when v < V, we apply the following computing steps: 

(a’) Compute E,_,(3) by a single step of backward recursion, using E,(G) as 
the initial value. 

(b’) Starting from E,- r(V), evaluate E,_ 1(x) by means of the Taylor series of 
Et-. 1 (V-y). 

(c’) Compute E,(x) by backward recursion for v < G - 1, using E,_ I(x) as 
the initial value. 

Figure lb illustrates the above procedure from E,(S) to E,(x), which is the only 
one needed when the required x lies in the “asymptotic” region (x k x,). In actual 
computations x, N 20. 

SSi/78/2-3 
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b 
” 

FIG. 1. (a) Scheme of the preliminary computational procedure (from E,.(v*) to E,(V)) for 
evaluating E,(x), required when v* # F: A : starting asymptotic value, Eq. (6); 0 : computed by 
backward recursion, Eq. (11); 0 : computed by Taylor expansions, Eq. (8). (b) Schematic representation 
of the basic computational procedure for E,(x), starting from E,(V) (see Eq. (14)); l : computed 
by Taylor expansions, Eq. (8); 0 : computed by backward or forward recursions, Eqs. (ll), (12); 
0 : searched value. 
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3. BACKGROUND OF THE PROCEDURE IN THE REGION x<l 

In the case x < 1, the generalized exponential integral, E,(x), is evaluate 
sively. Apart from the case E_,(x) (v = 0, 1, 2, 3, .~.), considered above, we start 
from an initial element, E,,(x) (v,= 1 -H(v) + v- TV] for v # [v] and vO= I 
otherwise), obtained by means of different series expansions according as 0 < v0 d d 
(d = 0.9), or otherwise. 

In the former case, the adopted series representation is the same as in 
and reads 

E,(x)=r(l-v) ~“-l-e--~‘* 
[ 

m;o %W)” 5m+1-v(-vx/2t 

where the coefficients a, can be generated recursively by 

b+ l)%,l =(n-v+l)a,_,+v@I,~, (M = 2, 3, . ..) 

with a, = 1, al = 0, and a2 = 1 -v/Z. 
The Tricomi functions [8], t,(t), are defined by 

or in terms of the Bessel functions, J,(z), by 

r,(t) = t-g’%442 J-f), BE81 

and are entire for every value g E R. 
By introducing expansion (17 j into Eq. (15) one gets the more explicit 

expressions 

where i = m + k, and (P)~ is Pochhammer’s symbol defined as 

(PL=PL(P+ l)...h+t- 1). 

The representation (15) has been obtained by means of the expansion [S] 

@*(1,2-v;x)=e”‘* jJ a,(x/2)“5,,,_,(-vx/2), 
m=O 

which, introduced into Eq. (3), gives the sought-for series representations of 
formulae (15~(19). 
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Otherwise, i.e., when d < v, < 1, we adopt for the starting element, E,,,,(x), the 
series representation used in Ref. [9], which has been obtained from the expansion 

E,(x) = -xv-’ A1 -VI X l--v- 1 m (-1)“x” 
l+(l-v)g(l-v) + l-v I -m;l (1-v+m)m!’ (21) 

where 

(22) 

y is Euler’s constant and bj are the coefficients of the power series for l/T(z), which 
have been tabulated in Ref. [14]. 

From expansion (21) we easily obtain the sought-for representation of E,(x) on 
(d < v0 < 1) by making use of the relations [ 10, 111 

x1-v- 1 ,U-v~lnx- 1 

l-v = (l-v)lnx 1” 

= 1+x 
i 

m Ccl-v)lnxl” Inx 
m=l (m+l)! I ’ (23) 

to be inserted into Eq. (21), respectively, when I(1 - v) In x 1 2 1 or otherwise. Once 
E,,,,(x) has been so calculated, if v # vO, the use of forward recurrence, Eq. (12), 
when v > 0 (backward recursion, Eq. (1 1 ), when v < 0), finally leads to the required 
E,(x). By also taking into account the results of Section 2, the generalized exponen- 
tial integral, E,(x), can be evaluated in the whole region (x> 0, ve:R) by means of 
the proposed numerical method. 

4. NUMERICAL RESULTS AND DISCUSSION 

In the case v > 0, the present algorithm is essentially similar to the one of 
Ref. [9], and the results of the related numerical analysis are still valid for the 
present procedure when v > 0. 

In particular, the adopted series representations have been properly used in the 
computational process in conditions ensuring stable recursive computations of 
E,(x), according to Gautschi’s results [15, 161. 

Moreover, the relevant series in Eq. (8) (for y > 0 as in Section 2) and Eq. (19) 
(for 0 < v < 1) are positive, so that achievement of convergence and error checks are 
easily determined. 

In particular, coefficients EVek(x) in Eq. (8) are positive functions for negative 
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TABLE I 

Values of the Generalized Exponential Integral E,(x) 

E (Xl 
-3/2 

E (Xl 
-5/z 

32 (X) E (X) 
-T/2 -9/a 
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FIG. 2. Function E,(x) versusx (O<x<2) and v (=l, 4, 0, -4, -1, -4, -2, -4, -3). 

values of the index too, as deduced from Eq. (ll), whose stability is well 
established.’ 

As regards the procedure in the case v < 0, we note that its analytical background 
and related computational steps are similar to those in the case v > 0. 

Furthermore, we have it that, apart from the stages inherent in backward recur- 
sions, Eq. (ll), the computing process still works on the range (x > 0, v > 0). It 
follows that the numerical considerations made for the case v > 0 are valid for the 
region (v < 0) too. 

Once basic aspects concerning the stability of the procedure have been so proved, 
its accuracy has to be tested. 

To this end, the efficiency of the algorithm in case v 3 0 is proved by the results of 
the numerical checks presented in Ref. [9]. As for the accuracy of the method when 
v < 0, comparisons have been made between the results of our procedure and the 
GAMMA algorithm of Refs. [ 10, 111. 

More precisely, computed values of E,(x), obtained within the present approach 
for very many values of v in the interval (- 100,O) and x in (0, loo), have been 

’ Recursions (11 ), for negative values of the index, are stable since the involved recurrence is positive. 
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compared with the corresponding ones calculated by means of the GA 
routine [ll 1. Results are in overall agreement. 

Numerical values for a significant set of E,(x) functions are illustrated in Fig. 2. 
Moreover, results of interest for applications [73, concerning values of E-,,,(x) 
(for 0 <x < 200; n = 1, 3, 5, 7, 9), are presented’ in Table I for the sake of 
comparison with other algorithms. They have been obtained on an IBM 37Ojl68 
computer, working in double-precision, and are significant up to fifteen digits. 

In conclusion, the present method allows reliable evaluation of the ge~era~~~~d 
exponential integral function, E,(x), in the region (x > 0, v E R). 

Note. A FQRTRAN version of the code, ERA, is available upon request from 
the authors. 
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